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1.0 INTRODUCTION

Under the Engineering Analysis Task of Contract F08635-87-C-0074,

two development efforts pertaining to GADS (Graphic Attitude Deter-

mination System) algorithms were pursued. These efforts resulted in

two upgrades to the GADS algorithms. The first upgrade resulted from

a direct linear algebra solution for the model drawing equations for a

body of revolution. The second upgrade resulted from developing an

error analysis that is driven by the model being displayed to deter-

mine an estimated covariance for the errors in the position and atti-

tude of the model being fit to the displayed image.
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2.0 IMPLEMENTATION OF ERIM ALGORITHM 3 FOR MODEL DRAWING

From several of the project reviews the model drawing algorithm

discussed here became known as ERIM algorithm 3. For historical back-

ground, ERIM algorithm 1 used a linear algebra solution to find the

visible edge by finding the plane through the axis of revolution of

the body and normal to the plane containing the line-of-sight and the

axis of revolution. This algorithm was used initially to increase the

model drawing speed. ERIM algorithm 2 used a linear algebra solution

to compute a point on the visible edge at each station along the axis,

by projecting the line-of-sight into the plane normal to the axis

revolution and then computing the tangent points of that projection

with the circle corresponding to the body. This corresponds to a

cylindrical approximation. The resulting models were approximately

equivalent to the original GADS algorithm and executed more rapidly.

ERIM algorithm 3 uses a more complete linear algebra solution and is

based on finding the line-of-sight which is orthogonal to the surface

normal of the body of revolution at each station along the axis of

revolution. This algorithm retains most of the speed of algorithm 2,

handles the nearly end-on case correctly, and provides for a depth

encoded outline of the model to be presented on the display.

2.1 LINEAR ALGEBRA SOLUTION FOR TANGENT POINT

Assume that the body of revolution is modeled by a series of trun-

cated cones which have a common axis (herein taken to be the X-axis).

This is the form used in the GADS model database. An additional

assumption will be used: that each individual "cylinder" in the data

base is smooth. The original data base often has objects with steps

or slope changes combined. The reason for the additional assumptions

is to give the user control over how the visible edges potentially

created by steps and slope changes are displayed.

The linear algebra solution to the tangent point of a line-of-

sight with a truncated cone is illustrated in Figure 1. The X-axis

3
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("into the paper") is the axis of revolution of the cone. The sub-
scripts b and 1 denote body and lens. The solution is based on com-

puting the two lines-of-sight, 1, (a quadric equation) which are

orthogonal to the normal to the surface of the truncated cone,

Tin =0 .

The two solutions, when they exist, correspond to the two visible

edges of the cone which are on opposite sides of the cone. The visi-

ble edges are straight lines and correspond to the intersections of

the cone with its tangent planes that pass through the origin of the

line-of-sight. To derive the solution, first let the origin of the

line-of-sight be transformed into the coordinate system of the body of

revolution. The x component, Xb - Xl, is the distance from the lens

to the plane normal to the axis of revolution at the station, Xb, of

interest along the axis. The vector [Yl, Z]T is the projection of

the line from the lens to the axis of revolution onto the same plane,

whose length is Rl. The radius of the body of revolution at Xb is

Rb(Xb), where functional notation will be dropped for simplicity.

Thus T becomes

X b - I '

T = Yb X

Zb -Zl

The surface normal depends on the position on the circle of revo-

lution. The component of the normal in the plane of revolution is

radial and thus proportional to the radius vector. The component in

the x-direction is directly proportional to both the radius and the

slope of the cone. Thus n becomes,

dRb(X b)

na -Rb dx
Yb

Zb

5
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Setting T-in = 0 gives

0 = -(Xb - Xl)Rbd + ( -y + (Zb " Z)Zb

Because there are two unknowns Y1 and ZI, a second equation is needed.
The radius of revolution provides the needed constraint,

Rb2 = yb2 + Zb2 .

Expressing the position on the circle of revolution in terms of com-
ponents normal and colinear with the projection of the line-of-sight

onto the plane of revolution gives

[Yb] Rb {sin [2] + cos 4-211

where # is the angle between the lines from [Xb, Y1 , Z1]T (the pro-
jected origin of the line-of-sight) to [Xb, O, O]T (the center of the
circle of revolution) and to [Xb, Yb, Zb]T (the tangent point).

Combining these equations gives the following equations for sin
and cos 0.

0 dRb  ,)(-- Xb -X ]Rb

dx( R b

+ Rb2 sin Y + cos 0 Z, -bb Y1 sin 0 Y, + cos 0 Z1
RI 2  Rb

+R2 [sin Z - cos - -I zl] [sin z - cos

R1 2"R

0- dx b [Xb -I + !b2 tR12 -rb [R12 sin

6l
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Rb -b(Xb - Xl)sin b =x RI

- [ - b (Xb - XJ]- Rt

COS ° R1  R

where Rt is the length of the tangent from the origin of the line-of-

sight to the cone extended to Xl. If the value is imaginary, the

origin of the line-of-sight (viewing point) lies within the extended

cone and there are no visible edges.

2.2 REVISED DISPLAY ALGORITHM

The revisions to the model display algorithm have two purposes:

Some implement the new display computations and some provide addi-

tional speed. The listing of the CIRCLE 3 module in Appendix A con-

tains the important changes.

The general organization of the module has been changed to perform

the display calculations in three passes over the data for each

"cylinder" of the model. The first pass analyzes each truncated cone

to determine which viewing case to use and compute intermediate

results. The second pass computes the tangent points, marks beginning

and end of visible edges, and determines where to draw circles. The

third pass computes the data structure for driving the display rou-

tines. Before the first pass, the position of the camera is trans-

formed into "cylinder" coordinates. The result is used to form "unit"

vectors corresponding to the axis of revolution [Xl, 0, O]T, the pro-

jection of the origin of the line-of-sight onto the plane of revolu-

tion [0, Yl, Z1]T, and normal to that projection in the same plane [0,
X1, .y1]T. These "unit" vectors are rotated (not translated) into the

camera coordinate system. This allows the tangent points to be com-

puted directly in camera coordinates, which saves time by not having

7
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to rotate each point. The subroutines MM2 performs only rotation,

compared to MM3 which performs both rotation and translation.

The first pass analyzes each cone by computing its slope, the

radius

Rb - dR b - 2)

of the extended cone at Xl, and Rt. A total of seven cases are

delineated:

1. Inside the extended cone between truncating plane and

infinity.

2. Inside the truncated cone.

3. Inside the extended cone between truncating plane and apex.

4. Inside the extended cone beyond apex.

5. Outside the extended cone on apex side.

6. Outside the truncated cone between truncated planes (includes

the degenerate case of a cylinder, DRDX = 0).

7. Outside the extended cone away from apex side.

The values of the slope and the radius are extended to the last point

of the model so that the second pass will compute the second tangent

point on the last truncated cone.

The second pass computes the points to be connected for the vis-

ible edge and where circles are to be drawn. Cases 3, 4, and 5 cor-

respond to visible edges, and the tangent points are computed using

the values from the first pass. Non-zero radius circles are drawn at

both ends and wherever the "case" changes between visible and hidden

or between two lines hidden on opposite sides of the extended cone

apex.

8
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The third pass computes the display data structure, first for the

visible edges and then for the circles. It also stores the computed

depth of each point for depth encoding of the lines on the display.

This depth encoding is accomplished by the Cytocomputer after model

movement stops, when requested by the operator.

9
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3.0 GENERATING A THEORETICALLY BASED ERROR COVARIANCE MATRIX

The purpose of this effort was to develop a covariance matrix for

the errors in position and orientation estimates obtained using manual

GADS. The basic underlying assumption made is that a human operator

matching a wireframe model to an image is using the location of edges

and is minimizing the "overall" error of the match. This process has

been modeled by a least squares estimation process, using linearized

equations to relate the model parameters (position and orientation) to

displacements of pixels in the image.

The wireframe model used by GADS is made from line segments which

model planar structures (e.g., fins) and bodies of revolution. The

bodies of revolution are modeled as a smoothly varying series of trun-

cated cones, which result from rotating a curve made from a series of

line segments. Thus, to develop the least squares estimator, we will

examine the matching of a line segment to features in an image.

Assume that the line segment is drawn between two points of the

model, p, and P2 and that a set of edge features were matched to the

line at locations fi i = 1, . ., I. Let the position and orienta-

tion parameters of the model be denoted as a vector a,

T tx, ty, tz, r, p, y

where tx = Camera x translation, in inches from model origin

ty = Camera y translation, in inches from model origin

tz = Camera z translation, in inches from model origin

r = Model roll angle

p = Model pitch angle

y = Model yaw angle

The position, xc = [xc, yc, zc]T, in camera coordinates of a model

point, m = [xm, ym, zm] , is given by

11
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xc* CpCy -Sp -CpSy tx ,xm'

C CrSpCy - SrSy CrCp CrSpy - SrCy ty ym

zc  SrSpCy + Crsy SrCp SrSpSy + CrCy tz zm

1 0 0 1 1

where Sp, Cp denote sine and cosine of the subscript p (pitch). A

perspective transformation brings points in camera coordinates into

image coordinates,

I xc(zc)'l 
k1 + k2]

y C(zC)-l k3 + k4.

where kl, k2 , k3 , and k4 are display-dependent constants.

In the matching process the operator adjusts the parameters, a, so

that the line segment has the same slope as the edge and is placed on

the edge. This corresponds to "putting a straight line" through

the points (Ti, i = 1, 1) which represent the edge. Let _Ij and 'Jn be

unit vectors in the direction of the line segment and normal to it

respectively,

u1 = IPl" P2I n = -10 1 ul

Then the distances of each feature point from the line, di, and along

the line, li, can be computed by

d =r - PC~) Tl= "f u

T

= "i - Un

12
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and

PC =2 (l~p - 2

where Pc is the center of the line segment. For short line segments,
only the displacement will be used now in the fitting process. The
analysis can be expanded to include slope for long line segments. The

least squares fit to an individual line segment of a displacement, Ad,

along the normal is given by

Ad ={ di
i=1

The errors of this process depend on the ability to locate edge
features. We will assume that the variance, Od 2 , of the errors in

locating the edge (measuring di) is constant over the image but depen-
dent on image quality. However, the di will not be independent for

closely spaced di. Therefore, we will assume a constant decorrelation

distance, Xd, along an edge which again depends on image quality. The
variance of Ad can then be expressed approximately as

OrAd 
2  Xd Od

2

I-Pi - P21
These displacements from each line segment of the model are

"averaged" over the whole model by the operator in adjusting the model

parameters, a, to minimize the overall error. This process will be
represented by the least squares fit of the displacements for line

segments of the model using linearized equations. Let the displace-
ments for all the line segments of the model be denoted by

Adj, j = 1, . . ., J

The displacements can be expressed in terms of increments in the model
parameters, L, by linearizing about the estimate of the model param-

13
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eters, a. The resulting set of equations is

Ad. = T , j = 1, . .. , J

where jT is the product of the normal and the matrix of partial

derivatives of Pc with respect to each of the model parameters,

T T P c c c BTc 8Tc]
aj =unT0)at~x , t'y , tz 8r I- 8p I- B-y-I

These equations can be weighted to be unit variance and combined

into matrix form as

Ad = AAa

where

dl/ Adl

d2/oAd2

Wd=

S

dj /oAdj.

and

a"T/0'Ad
1

- T
a2 aAd

2

a4/UAd

14
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The weighted least squares solution is computed using the generalized

inverse of A and is given by

!a = ATAI 1 AT Td

Given this relationship we can now derive a covariance based on small

error approximations.

3.1 DERIVATION OF COVARIANCE MATRIX

The covariance matrix for the estimated parameters of the model is

is derived from the weighted least squares solution. The covariance

of a is given by

Coy (3) = E[[a - E{a}][_a - Eja}TI

Assume that the initial guess for a is sufficiently close and that

the fitting process has been iterated to a stable solution. Then the

linearized weighted least squares solution derived above can be used

to compute the covariance by taking E{a} as the point of lineariza-

tion. Under theses conditions,

r- Efa}] = Ca= (A TA)'_A T A

Coy (3) = E[t(a)(a)1I

= [ATA)'1A T E{d Wd1A(ATA)_

= [ATAf_
1

because the displacements Ad were constructed to be a unit variance

uncorrelated random process.

15
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3.2 IMPLEMENTATION OF COVARIANCE COMPUTATION ALGORITHM

The algorithm for computing the covariance is an enhancement of

the model drawing algorithm. After the end-points of a line segment

to be drawn are computed, the contribution to the inverse of the

covariance matrix is computed. After all line segments are con-

sidered, the matrix is inverted to form the covariance.

The contribution for each line segment is the outer product of aj

with itself normalized by the length of the line segment. Thus, the

incremental contribution to the inverse covariance is given by

2 1o~' 2 co 1 -)+ I (j- T
X d o d c o ( a d 1(a )j - 2 j ) _

where P1(J) is the pixel position of the beginning of the line
segment,

pI(J) is the pixel position of the beginning of the line
segment,

P2(J) is the pixel position of the end of the line segment, and
aj is the projection of the partial derivative matrix onto

the normal to the line segment.

The partial derivatives are computed using the chain rule. Thus, the

partial derivatives of a position in pixel space is given in terms of

camera coordinate partial derivatives by

BOa i

Sai K3( c -2 c c

where ai represents any of the model parameters. The partial deriva-

tives of the position in camera coordinates with respect to the camera

translations are constants, either zero or unity,

16
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8C aC aC

atx aty i at

0 8C aC Cz

aty atz atx

and

0 x- ax c BzC
a ax aty

The partial derivatives of the position in camera coordinates with

respect to the model orientation angles are products of rotation
matrices with the position vector of a model point,

ax C
8r 0 0 0 M

-.Y -S SC -C s -S c S SS -CC
rr - ry r y r p r py r y

c CrS C y- CC p CrC p -CrS S y- SrC Y
__ rp p r ry r.z
ar

a SCC -CS -CSPS

§p = Crpy -rp -rpSy ~m

ap

and

17



JRIM

8xc
ay-PY0 -CpCY ,m

ly -CrSpSy " SrCy  0 CrSpCy + SrSy m
rpay p ry

azC SrSpSy + CrCy 0 "SrSpCy - CrSy zm
ayj

These rotation matrices are computed using a variation of the subrou-

tine for the model transformation matrix.
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